Classifier ensembles for fMRI data analysis: an experiment.
نویسندگان
چکیده
Functional magnetic resonance imaging (fMRI) is becoming a forefront brain-computer interface tool. To decipher brain patterns, fast, accurate and reliable classifier methods are needed. The support vector machine (SVM) classifier has been traditionally used. Here we argue that state-of-the-art methods from pattern recognition and machine learning, such as classifier ensembles, offer more accurate classification. This study compares 18 classification methods on a publicly available real data set due to Haxby et al. [Science 293 (2001) 2425-2430]. The data comes from a single-subject experiment, organized in 10 runs where eight classes of stimuli were presented in each run. The comparisons were carried out on voxel subsets of different sizes, selected through seven popular voxel selection methods. We found that, while SVM was robust, accurate and scalable, some classifier ensemble methods demonstrated significantly better performance. The best classifiers were found to be the random subspace ensemble of SVM classifiers, rotation forest and ensembles with random linear and random spherical oracle.
منابع مشابه
Feature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملIdentification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملChoosing Parameters for Random Subspace Ensembles for fMRI Classification
Functional magnetic resonance imaging (fMRI) is a noninvasive and powerful method for analysis of the operational mechanisms of the brain. fMRI classification poses a severe challenge because of the extremely large feature-to-instance ratio. Random Subspace ensembles (RS) have been found to work well for such data. To enable a theoretical analysis of RS ensembles, we assume that only a small (k...
متن کاملMachine Learning Classification of fMRI Data in Semantic and Syntactic Tasks
The mental processes underlying the understanding of words and sentences are still poorly understood. Computational analysis of data from Functional Magnetic Resonance Imaging (fMRI) experiments has been an invaluable tool for understanding the patterns of neural activation associated with mental processes. Analysis of data can be very difficult due to interference between stimuli as well as no...
متن کاملStatistical Analysis Methods for the fMRI Data
Functional magnetic resonance imaging (fMRI) is a safe and non-invasive way to assess brain functions by using signal changes associated with brain activity. The technique has become a ubiquitous tool in basic, clinical and cognitive neuroscience. This method can measure little metabolism changes that occur in active part of the brain. We process the fMRI data to be able to find the parts of br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance imaging
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2010